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ABSTRACT

A limiting absorption principle and corresponding existence theorem is

presented for steady—state acoustic wave fields in simple and compound

waveguides. The simple guides are semi—infinite cylinders, sectoral horns

and conical horns. The compound guides are structures built by coupling

one or more simple guides to a bounded cavity. The theory is developed

under minimal regularity hypotheses about the waveguide walls. The class of

allowable guides includes all the simple, but non—smooth, structures that

arise in applications such as guides built from polyhedra and sections of

cylinders, cones, spheres and other simple geometrical structures.
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SECTION ONE

INTRODUCT ION

The acoustic waveguides studied in this paper are characterized geomet-

rically by a class of unbounded domains Q in 3—dimensional Euclidean space

E3 of the form

i 1 I’ I”

(1.1) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where is bounded , each S~ is a semi—infinite cylinder , each S! is a

sectoral horn and each Sj ~ is a conical horn. Each set S~ , S~ , S~ is

defined by a coordinate system in E3 . In particular

(1.2) Si 
= S~ (y~) = {q E E3: (x~(q),x~(q)) E Gi and y

1(q) > y~}

where (x~ ,x~ ,y
’) E R3 are Cartesian coordinates, y

~ 
E R and C1 C R

2 is a

bounded domain. Similarly,

(1.3) S~ = S~ (p~) = tq E E 3 : p3 (q) > and (O~ (q),z~ (q) )  E G~ }

where (p3 ,03 ,z3 ) € R 3 are cylindrical coordinates , p
~ 

> 0, = M ! x  (O ,z~ ),

M~ is a domain in the unit circle S
1 (which may coincide with S’) and z~ > 0.

Finally,

(1.4) S~ = S’~(r~) = {q € E~ : rk(q) > r~ and ~
k(q) E G~}

where (rk,rlk) € R x are spherical coordinates, S2 is the unit 2—sphere ,

r~ > 0 and G~ is a domain in S
2. The pair—wise intersections of the
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I + I’ + I” sets S~, S~, Sj~ are assumed to be bounded . For suitable choices

of 
~
20 , y~

, p
~
, r~ one then has

(1.5) the I + I’ + I” sets Si, S~ , S~ are pair—wise disjoint

By further specialization of £~~, y~, p~ , r~ it can be arr-anged that

the I + I’ + I” + 1 sets ~~ S1(y~ + 1), S~ (p~ + 1),
(1.6) 

kS~ (r0 + 1) are pair—wise disjoint.

Throughout the paper ~ is assumed to satisfy (i.l)—(l.6). The simple wave—

guides are the special cases where I + I’ + I” = 1 and 
~o is empty. The

remaining cases are called compound waveguides. The domains ~7 include a

large number of geometries that arise in applications. The sectoral horns

include parallel plate waveguides (M! = S1). The conical horns include the

exteriors of spheres (Gj~ = S2), half—spaces , wedges and the complement of a

plane with a bounded aperture.

Each waveguide is assumed to be filled with a homogeneous fluid whose

equilibrium state is characterized by a sound speed c0, density p0 and

pressure p0. It is assumed here that c0 = 1 and p0 = 1 since this can be

achieved by a suitable choice of units. The acoustic field in ~l is char-

acterized by a real—valued acoustic potential u(t,q) which satisfies the

d’Alembert equation

(1.7) — t~u = f(t,q), t E R, q e ~2

where A is the Laplacian in E3 . The function f will be called the source

fuLlctiori . It has the structure [19, p. 280]
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(1.8) f(t,q) = ~V(t,q)I~t + Q(t,q)

where V(t,q) is a potential for the (conservative) force field and Q(t,q)

is the volume flow in S~. On the waveguide walls, described by the boundary

~Q, u(t,q) satisfies the Dirichiet condition

(1.9) ~~~~ = 0 if ~~ is a soft boundary

and the Neumann condition

(1.10) = 0 if ~2 is a hard boundary

where au/as = Vu ~ and is a normal vector on

Steady—state acoustic fields are generated by source functions of the

form

(1.11) f(t,q) = g1 (q) cos wt + g2(q) sin wt Re {g(q) e
_
~~

t}

where w > 0 and g = g1 + ig2 . The corresponding steady—state acoustic

potentials have the same form

(1.12) u(t,q) = v1 (q) cos wt + v2(q) sin wt Re {v(q) e }

where v = v1 + iv2. u(t,q) satisfies (1.7) and (1.9) or (1.10) for all

t E R if and only if

(1.13) Av + w2v = —g(q), q € ~l

and

(1.14) v~~~ = 0 or = 0
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These conditions do not determine V uniquely. Instead, solutions may differ

by any solution of the reduced problem with g(q) E 0 in ~2. Among these are

the solutions in L2(~2), corresponding to eigenvalues w
2 of the operator —A

acting in L2(~). F. Rellich [18] and D. S. Jones (10] have shown that such

eigenvalues may exist when I” 0 (no conical horns in ~7). If 3~2 has sharp

edges or vertices the reduced problem may have “edge wave” solutions which

correspond physically to sources hidden in the edge. For example if

= {q € E 3 : 0 < 6(q) < rr/2} then

(1.15) v = H~
’
~~(wp)

satisfies (1.13) with g(q) 0 in ~2 and the Neumann condition on 31~. Edge

waves are eliminated by requiring that the time—averaged energy of the field

be locally finite:

(1.16) J~ 2
{IVv I2 + w21v12 } dV < for every compact K C E3

This condition is called the “edge condition” in the older literature

[2, 14].

The physically important steady—state fields behave like outgoing

waves in each unbounded component of ~l. These solutions are characterized

by a radiation condition of the Sommerfeld type which eliminates another

type of non—uniqueness caused by “incoming wave” terms in v(q).

The paper is organized as follows. In section 2 selfadjoint operators

and in L2(~) are associated with the Laplacian and the Dirichlet and

Neumann conditions, respectively . In section 3 the radiation condition is

defined and used to formulate the uniqueness theorem. The existence of

outgoing steady—state fields with prescribed source functions g is proved

in section 4 as a corollary of a limiting absorption theorem . The latter ,

~

—-—-— r n -~~~~~~~~~~~~~~~ - - -~~~~~~~~-- - —.- S~~~~~—~~~~~~~~~ -—_ _—  . - -~~~~~~~~~~~- . -
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which is the central analytical result of the paper , asserts that the

resolvent R~(z) = — (As + z) 1 (resp. R~(z) = —(A~ + zY’) has limits when

z = to2 ± ~~~ 
.÷ ~~2 ± iO provided that to2 is not an eigenvalue of —A~ (resp.

—A~) and to is not a cutoff frequency (see section 3) of one of the wave—

guides S1 or S~ .

Section 5 contains a discussion of the proofs of the theorems formu-

lated in sections 2—4. These theorems are generalizations to waveguide

domains of results of Wilcox on scattering in exterior domains. The latter

were presented in the monograph (231 to which reference is made for details

of the proofs. The discussion in section 5 is limited to those points in

which the proofs of [23] must be modified to treat waveguides.

Related Literature. The principle of limiting absorption has a long

history. An early statement of it was given in 1905 by W. Ignatowsky [9~

and it has often been used as a heuristic principle in the physical

literature. It was proved for the waveguides formed by parallel plates and

perfec t cylinders by A. G. Sve~nikov (20, 21]. The first general proof is

due to D. M. Eidus [4] who studied elliptic operators with variable

coefficients in exterior domains and perturbed cylinders. C. I. Goldstein

has also proved the principle for perturbations of cylinders as part of his

spectral and scattering theory of waveguides [5, 6, 7]. The case of finite

perturbations of a cone in E2 was treated by Goldstein in [5 , III]. Gener-

alizations to higher—dimensional cones and more general differential opera-

tors and boundary conditions were announced but not proved in that paper.

W. C. Lyford [121 has proved the limiting absorption principle for compound

cy lindrical waveguides in the same generality as here . The authorH know of

no treatment by the methods of this paper of compound waveguides contain ing

sectoral and conical horns. Most of the results of this paper were ~I nnouJ1t -~ d

by the authors in [8].
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SECTION TWO

HILBERT SPACE THEORY OF THE LAPLAC IAN

The basic Hu bert space of this section is the Lebesgue space L2 (~~)

with scalar product

(2.1) (u,v) = u(q) v(q) dVq

where dVq 
denotes integration with respect to Lebesgue measure in E 3 . The

definition of the selfadjoint realizations of A in L2(~2) associated with the

Dirichlet and Neumann conditions also requires the Hu bert space L2 (i2,C3)

of Lebesgue square—integrable vector fields on Q with scalar product

(2.2) ~~~ 
= J Z(q)  . ~(q) dVq

and the following linear subsets of L2 (fl) and L2 (f~,C
3):

(2.3) L~(~) = L2(~) fl {u: Vu € L7(~ ,C3)}

(2.4) L~ (A ,fl) = L~ (Q) fl {u: Au E L2 (i2)}

(2.5) L2(V ,~ ,C
3) = L2(Q ,C3) fl {Z: V . C L2(Q)}

In the definitions Vu , Au and V • X are to be interpreted in the sense of
distribution theory. The spaces (2.3)—(2.5) are also Hilbert spaces with

respect to suitable scalar products [22, 23].

The classical Dirichiet and Neumann conditions are replaced here by the

generalized Dirichlet condition

• 1
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(2.6 ) (u,V~~) + (Vu,~) 0 for all ~~E L2(V~ ,~2,C
3)

and the generalized Neumanfl condition

(2.7) (Au,v) + (Vu,Vv) = 0 for all v € L~ (i~)

respectively. These conditions are applicable to arbitrary domains ~ and

are equivalent to the classical conditions when ~~ and u are sufficiently

regular [22, 23]. Operators A~ and A~ in L2(~2) are defined by A acting on

the domains

(2.8) D(A~) 
= L~(A ,~2) fl tu: u satisfies (2.6)}

(2.9) D(A~) = L~ (A ,~l) n {u: u satisfies (2.7)}

They provide the starting point for the theory of acoustic waveguides

developed below. Their utility is due to [12, 23]

Theorem 1. For every domain ~ C E
3 the operators Ag and are

selfadjoint non—positive operators in L2(~2).

The theorems in the remainder of the paper are based on a local

compactness property of operators in L2 (fl) described by the

Definition. A linear operator A in L2(~) with domain D(A) C L~ (l~) is

said to have the local compactness property (in symbols, A € LC) if and

only if for every bounded measurable set K C E3 and subset S C D(A) which

is bounded in L~ (K fl fl) the set S is precoinpact In L2(K (~ 12).

The embedding of L~ (12) in L~ (K 012) and L2(K 0 12) implied by the

definition is the natural embedding which assigns to any function on 12 its

restriction to K 0 12.

A domain 12 is said to have the Rellich property if , for each bounded

measurable K C E3 , the natural embedding of L~ (K 0 12) into L2 (K 0 12) is 

.
~~~~~~~~~~~~~~~~~ - •— - - — - • -——~~~~~~~~- -
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conpact. If this property holds then every operator A with D(A) C L~~(12)

satisfies A € LC. Not all domains have the Rellich property  [3]. The

property was proved by Rellich [17] for domains with piecewise smooth

boundaries and by S. Agmon for domains having the “segment property” [1 ,

Theorem 3.8]. Wilcox [23] extended Agmon ’s proof to domains with the

“finite tiling property .” Thus Ag E LC for these classes. Of course

Ag C LC for the same class. However, in the case of the Dirichiet condition

restrictions on ~12 are not needed . Instead , one has

(2.10) Ag C LC for every domain 12 C E
3

A proof is indicated in section 5.

In the remainder of the paper the class of domains 12 defined by (1.1)-

(1.6) is denoted by and the subset consisting of domains 12 € such that

Ag € LC is denoted by W1
~. Moreover, in discussions of Ag (resp. Ag) it is

always assumed that 12 € WD (resp. W1
~). Witi this understanding the theories

D N .of A12 and A12 are identical. For conciseness the symbol A~-~ is used below to

denote either Ag or Ag in statements that are valid for both .
The study of the point spectrum of A12 was begun by F. Rellich [18] and

extended by D. S. Jones [10]. They showed that domains 12 having a conical

horn (1” > 1) have ao point spectrum , while domains with no conical horn

(I” = 0) may have point spectrum . Geometric criteria for its existence were

given and Jones showed that it must be discrete; i.e., each interval can

have only finitely many eigenvalues and each has finite multiplicity . The

work of Rellich and Jones involved stronger local regularity hypotheses on

~12 than are made here . However, their methods of proof are based o~ the

quadratic forms associated with A12 and can be extended to all domains for

which A~ C LC.
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SECTION THREE

THE UNIQUENESS OF STEADY-STATE WAVE FIELDS 4

The asymptotic behavior of steady—state fields in the unbounded

cylinder and/or horn portions of 12 is determined in this section and used

to formulate a radiation condition and corresponding uniqueness theorem .

The basic space of this section is defined by

(3.1) L~
0c
(~) = V ’ ( 12)  0 {u: u C L2 (K 0 12) for every compact K C E3}

1
where V’(12) is L. Schwartz’s space of distributions in 12. L2 

c(Q) must be

distinguished from the more familiar space

(3.2) L~
0c (12) = V ’ ( 12)  0 {u: u C L2(K) for every 1~ompact K C 12}

Note that the condition u E L~
0
~ (11) restricts u near ~12 while u E L~~

’(12)

does not. The local analogues of the remaining spaces of section 2 are

also needed. They are

(3.3) L~
0c2 (12,C3) = V’(12,C 3 ) 0 {A: ~~E L2(Kfl 12,C3) for every compac t K C  E3}

(3.4) L~~~
0C
(Q) L~

0C
(~~) 0 {u: Vu C L~

0c(~ ,C3)}

(3.5) L~ ’~° (A ,12) = L~~
i0c
(~) 0 {u: Au C L~

0C
(~)}

(3.6) L~
0c(V.,~~,C3) = L~

0
~ (~~,c~) ‘

-
~ {~: V.~~C L~

0C(Q)}

The following spaces are also needed

(3.7) L~
om
(~) E ’(E 3 ) ~ L2 (12)
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(3.8) L~~
com
(~) = L~

°m(12) 0 L~ (12)

(3.9) L~
om(Q ,C 3) = E’(E 3 ,c 3 ) 0 L~ (12,C3)

(3.10) L~
om(V.,12,C3) = L~

om (12,C3) ~ L2(V . ,12,c 3 )

where E’(E3) is L. Schwartz’s space of distributions in E3 with compact

support.

Operators Ag
~Loc and in L~° (12) are defined by A acting on the

domains

(3.11) D(Ag~
Roc ) = ~~~~~~~~~~ 0 {u: (2.6) holds for all ~~~€ L~~°~~~(V.,~~~,C~~))

(3.12) D(Ag~~
00
) = L~~~~

C(A,~) 0 {u: (2.7) holds for all v C L~~~
0m
(~)}

In section 4 it is shown that steady—state fields with source functions

g C L~
om (ll) exist in the domains (3.11), (3.12). Such fields satisfy the

edge condition (1.15) and the generalized Dirichlet or Neumann condition.

For brevity, the notation ~~
oc will be used to denote either Ag~

R
~
0c 

or

in statements which are valid for both.

Let v C D(Aj~
0
~) satisfy

(3.13) Lw + w2v = —g(q) C

where w > 0. To study the asymptotic behavior of v(q) it will be convenient

to restrict it to the sets 
~~ 

S~ , Sj~ by means of a smooth cutoff function.

To do this choose a function j ~ C~ (R) such that

(3.14) j(T) E 0 for t < 0, j(t) 1 for T > 1, 0 < j(T) < 1

and associate with each function u on 12 the functions ui on 5~ ’ u~ on S ,

on S~ defined by



(3 .15) u~~(q) = j ( y
i
(q) — y

~ 
— l)u(q) for all q E S~

(3.16) u!(q) = j ( pi(q) — p
~ 

— 1)u(q) for all q €

(3.17) uj~(q) = j (r
k
(q) — r~ — l)u(q) for all q C Sj~

The corresponding linear operators, defined by

(3.18) J~u = u1, J!u = u~ , Jj~u =

have the properties described by (cf. [12])

Proposition 3.1. The restrictions of J~, J~, Jj~ to the spaces L~
0t

(12) ,

D(A~
0C), L2 (12) and D(A12) are linear continuous mappings of these spaces into

the corresponding spaces for S~ , S! and S~ respectively.

The topologies of the spaces L~
0
~ (12), D(A~

0
~) referred to in Proposition

3.1 are the Fr~chet topologies defined in [12, 23]. The structure of the

functions v~, v~, v~ corresponding to (3.13) will be analyzed by means of

the special coordinate systems that define S1, S~ , S~ and spectral analysis

with respect to the Laplace—Beltrami operators for Gi C R
2
, G~ C S x R,

C ~2 , The corresponding selfadjoint non—positive operators in L2 (Gi),

L2 (G~ ) ,  L2 (Gj~7 will be denoted by A~ and A~, A~
D and A~

N , Aj~
D and

respectively. Their definitions are entirely analogous to those of Ag and

Ag in section 2. In fact, the definitions given there are applicable to the

Laplace—Beltraxni operators in subdomains of any Riemannian manifold. The

notations Ai, A! , Aj~ will be used to denote either the Dirichlet or the

Neumann operators in statements that are valid for both . The discreteness

of the spectra of these operators follows from the following proposition

whose proof is indicated in section 5. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Proposition 3.2. The hypothesis 12 C ( r e sp . ,  12 € wN) implies that

and Aj~
D (resp., and Aj~ ) have the local compactness property.

Note that A !D E LC and A~
N € LC because G~ is just a rectangle in

S1 x R, a domain with the Rellich property. These observations and the

boundedness of Gi, G~ , Gj~ imply that 
_A
~
, —A~, -A~ have discrete spectra

lying in [O,oo). The eigenvalues, enumerated in increasing order and

repeated according to multiplicity, will be denoted by {w~~}, {j ~~ 2~}, (v~~)

respectively where £ l,2,3, .  Corresponding complete orthonormal sets

of eigenfunctions in L2(G1), L2(G!), L2(Gj~) will be denoted by {c~~~}, {4~~},

The sequences {p~2~}, 
{ p~~) will be constructed from those for the

operators —&~~~ 
= —d 2/d0 2 in L2(M~) and ~

A (oz ~) 
= —d 2/dz2 in L2(O,z~) by

separation of variables; i.e.,

(3 19) 2 = v ’2 +w ’21
~j2. jm (2~) jn( Z )

(3 .20) $!~~(0 ,z) = a
jm(i)(O) b

jn( L)
(Z)

where (d 2/d0 2 + v
~~
)a
jm 

= 0, (d2/dz2 + w~~)b. = 0 and £ ~ (m(2~),n(i)) is a

suitable enumeration of the pairs (m,n) of positive integers.

It will be convenient to represent u1, u~ , u~ as functions of the

special coordinates in S1, S~ , S’~. The following notation will be used

(3.21) u1(x
’,y1) = u

1
(q) where (xi,y

i
) q E S~

(3.22) u(p~,0~ ,z~) = u~(q) where (p~ ,8~ ,z~) q C S!

(3.23) uj~(r’~,r~~) = uj~(q) where (rk,r~~) q € S~

The expandability of these functions in the elgenfunctions of A1, A’., A~

whenever u E D(A~
0c
) follows from [22, Theorem 2.21 
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Proposition 3.3. The correspondences (3.21)—(3.23) define continuous

embeddings

(3.24) D(A~
0c) C C([y~~,co),L 2 (G

i
) )

(3.25) D(A~~
’
~) C

(3.26) D(A~~
c
) C

Propositions 3.1 and 3.3 imply that for every u C D(A~
0c) the

coefficient functions

(3.27) uj~ (y) = 
~~~ 

u~(x,y) dx

(3.28) u!2
(p) = J ~~~ (e~ z) u~ (p, O ,z) dOdz

(3.29) ~~i
(r) = 

JG~ 
~~(~) u(r ,fl) dfl

are continuous and one has the following two propositions.

Proposition 3.4. For every u € D (A~
0
~
2) the following expansions are

valid .

(3.30) u1(x ,y) = 

~~l 
u 1~ (y) 

~~~~~~~ 
convergent in D( A ~

0c )

(3.31) u~ (p, O ,z) = ~ u ’~~(p) 4~~~(0,z)~ convergen t in D(A~?c)
3 £=l j 3 j

(3.32 ) u~(r,fl) 
~ 

uj~~(r) ~~~(n)~ convergen t in D(A~~0)
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£ocProposition 3.5. Let v € D(A 12 ) satisfy (3.13) and let g~~(x ,y)  = 0

for y > y’(g) , g (p, O , z) = 0 for p > p-~(g) and gj~(r ,rt) = 0 for r > rk(g).

Then the coefficients v , v 2,, vj~ satisfy the differential equations
i~ 3

(3.33) L ~~ w2_w~~,l/2J v11(y) = 0 for y > y
i(g)

, to2 —.~~
’2  “ ‘ 1/2(3.34) L 
jn(~ ) ’  “jm(~)) 

p v!~~(p) = 0 for p > p3 (q)

(3.35) L 
[
~~~,w

2 ,(v~~ + l/4)~ ’2} rv~~ (r) = 0 for r > rk (g)

where

(3.36) L 
(~

_,a~b) = j
~

—
~

- + (a— (b2 — l/4)/x2)

A solution basis for (3.33) is defined by

(3.37) exp {i(w2 
— 42)

hhl 2 y}, exp {—i(w 2 
— w~~ ) h/’2 y }, to ~ to

1~ ,

(3.38) 1, y , to to~~~

Solution bases for (3.35), (3.36) may be based on the usual Hankel f u n c t i o n s

I&~
’
~~(z) , H

(2) ( )  which ha ve the asymptotic forms [13J

(3.39) H,~
1
~~
2) (z )  .. [~J ~~~~~~~~~~~~ z

where 1 ~ + and 2 ~ 
- . With this notation a solution basis for (3.34) is

(1 2
(3.40) H 

) ((~~
2 ,2  ) 1/2 p ) ,  v = v ’ £) ‘  ~ ~ W j (f )‘V 

toj n ( 9 . )  j m (

(3.41) 

_v
j(~ 

V) jm(9~)
~ to = toj(~,)~ ‘Vj (k) ~ 0

5- - - - — . - ~~~~~~~-_-“ 5-~~~ —5- -— - -
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(3.42) 1, £n ~D to = üL (p~)~ V (9~) =

Similarly, a solution basis for (3.35) is

(3.43) r
1’~
’2 H.~

1
~~

2) (tor) , v = (~~~~+ 1) 1~’2 , to # 0

1/2 —f+(v~~+~.) 
1/2

(3.44) r , r , w 0

When multiplied by the time—factor e
_ itot of (1.11) the solutions (3 .37)

describe propagating waves In S~ if and only if to > tofl. Similarly, (3.40)

and (3.43) define propagating waves in S~ and Sj ~ if and only if to > to .
(1)

and to > 0, respectively. The numbers {to~~~} , (t o ! ) ,  0 are called the “c u t o f f

frequencies” for the waveguides S1, S~ , S~ , respectively. The notation

(3.45) acu toff (12) = ~U U{to&J u [~ U (w~)J 
u (0)

1=1 £=l j 1  n 1

will be used .

Concerning the point spectrum of A12, it is clear from Propositions 3.4

and 3.5 that every eigenfunc t ion must have coe f f i c i en t s  v1, v ! , v~ which are

zero in all propagating modes and decrease exponentially in all cutoff modes.

En particular, if 12 contains a conical horn (I” > 1) then A1-2 can have no

point spectrum, as was proved by Rellich .

The goal of this paper is to show that for all frequencies to > 0 except

cutoff frequencies and the square roots of eigenvalues of —A12 there exist s

in D(A ~
0c ) a unique solution of (3.13) which is a pure outgoing wave in each

propagating mode and is exponentially decreasing in each cutoff mode . The

description of these solutions is facilitated by the use of the f u n c t i o n s

(A ± f~~) 1~’2 defined by

..

~
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(3.46) Im z1~
2 > 0 for all z E C — [O,a~)

(3.47) (A ± io) ”2 = lini (A ± ic)’12

Note that

(3.48) ±(A ± jØ)1/2 A 1’2 > 0 for all A > 0

(3.49) —i (A ± io) 1E12 
= (—A)”2 > 0 for all A < 0

Definit ion.  Let to € [O ,~) — G tff
(E2)

~ 
Then a solution v C D(A~

0C )

of (3.13) is said to satisfy the outgoing radiation condition if and only if

there exist constants ciL(w) , c~~ (w) , c
~L
(w) such that

(3.50) vjj(y) = cij(w) exp C1(w
2 

— + 10)1/2 y} for y > y1(g)

(3.51) 
v~~(p) = ch(to) R

(’)((w 2 
- + iO)”2 p),

V = v!~~~~~ for 
~ 

> p~~ g~

vj~~(r) = cj~~(to) r
h/2 H,~

1) ((to2 + iO)”2 r),
(3.52)

V = (‘Vu + 1) 1/2 for r > rk(g)

v is said to sat isfy the incoming radiation condition if (3.50)—(3.52) hold

with (A + io) 1~’2 replaced by (A — io) 1~’2

The uniqueness theorem can now be formulated as follows .

Theorem 2. Let to € [0,00) — O f f (ll) and let  v E D (A~
00 ) satisf y

(3.53 ) Av + co2v 0 in 12

(3.54) v satisfies the outgoing or incoming radiation condition

- - - - 5 --~~-5,~- -~~~~~~~~~~~~~- --



19

(3.55) v is orthogonal in L2(Q) to the eigenspace of —A12 for the eigen—

value w~ (which contains only the zero vector if to 2 is not an

eigenvalue)

Then v(q)  = 0 in 12. Moreover, if 12 has a conical horn component (I” > 1)

the same result holds for all to > 0.

Note that condition (3.55) is meaningful, even though v is not in

L2 (12), because the eigenfunctions of A12 are exponentially decreasing in each

waveguide and (3.54) implies that the coefficients v1, v~, vj~ are bounded .
Theorem 2 clearly implies the uniqueness of solutions in D(A~

0
~) of

(3.13) which satisfy (3.54), (3 .55) . Of course, this result is of interest

only if such solutions exist. In section 4 Theorem 2 is shown to imply the

validity of a limiting absorption principle and , as a consequence, the

existence of outgoing and incoming solutions in D(A~j
0c
) for every g E L~

om ( 12).

~

--

~

-

~

-—

~
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SECTIO N ~ )UR

THE LIMITING ABSORPTION PRINC IPLE

The spectrum, the point spectrum and the continuous spectrum of the

operator —A12 will be denoted by o(12), a~(12) and %(12), respectively. Thus

~ (12) C [0 ,°°) and o(12) = a (12) u 
~~~~ 

[11]. The resolvent operator of —A 12,

(4.1) R12(z) —(A12 + z) ’, z E C — a(Q)

is bounded in L2(12) and z ~ R12(z) defines a holotnorphic L2(12) operator—

valued function in C — a(1) [11]. This function cannot be extended to

points z E a(12). However, it will be shown that if g € L~
om (ll ) then the

mappin g z ~ R12(z)g C D(A~~
c) has one—sided limits at the points of the set

(4.2) A = Oc
(12) — 

cutoff~
12
~~

2

This result is a corollary of

corn —

Theorem 3. For each g € L 2 (12) the mappings T+ and T _ from

{ (A ,ci) : A > 0 and a > 0) to D(A~
0
~) defined by 

—

(4.3) T~ (A ,G) R~ (A ± i~)g E D(A~
0C
)

are continuous. Moreover, for each interval I = [a,b] C A and each > 0,

and T are uniformly continuous on I x (0,a0 ] .

This result was proved in [23] for the special case of exterior domains

(Gj~ = S2). The extension of the proof to the class of waveguide domains

and is given in section 5. An immediate corollary of the uniform

continuity statement of Theorem 3 is the

_________________
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Limiting Absorption Principle. The mappings T+ and T_ have continuous

extensions to the set

(4.4) {(X,a): A > O,c > 01 u {A x [Q ,~
)}

Moreover, the limits T÷ (A ,O+) ~ R€~(A ± io)g, A € A , define operators

R12(A ± io) from L~
Otn(cl) to D(A~~°) which are bounded uniformly on compac t

subsets of A.

A second corollary is the following existence theorem for steady—state

fields in waveguides.

Theorem 4. For each to > 0 such that to2 € A and each g C L~
om (12) let

(4.5) v
±
(,w) = ~~ (w 2 ± io)g C D(A~

0c)

Then v+(q,w) (resp. v (q,w)) is the (unique) outgoing (resp. incoming)

solution in D(A~
0c) of (3.13). 

—~~ - -— - 5 -—  —— —. ~~
- - 

~~~~~~~~~~~~~~~~~~~~~~ 
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SECTION FIVE

PROOFS OF THE ThEOREMS

The validity of Ag € LC for every 12 C B 3 follows from the characterization

(5.1) DCAg) = L~~’° (12) n

where L~~’°(f2)  is the closure of C~ (12) in L~ (12), and from the fact that for

bounded domains 12’ the natural embedding of L~ ’
°(12’) into L2(11’) Is compact

[1, Theorem 8.3]. To prove (5.1) note that L~ ’
°(12) 0 L~~(A ,12) = D(A) where

A is the selfadjoint operator associated with the sesquilinear form

A(u,v) = (Vu,Vv) with domain D(A) = L~ ’
°(f2) [11, p. 322). It is obvious

that A C —Ag. Hence A = —Ag by the maximality of selfadjoint operators

which proves (5.1).

Proof of Proposition 3.2. A proof will be indicated for the operators

A~ corresponding to the cylinders S1. The other cases can be proved

similarly.  The property A1? e LC follows by the method of the preceding

paragraph. To prove A~~€ LC let S = {v(x)} C D (A~ ) be bounded in L~~(G~ ) .

Let ~1(q) be the characteristic 
function of S1, 4 C C~ (R) , ~(y) 1 f or

y~ + 1 < y < y
~ 
+ 2, 4 (y) E 0 outside y~ + < y < y~

’ ÷ and def ine

S’ Cu: u(q) v(x1(q)) 1(y1(q) )  x1(ci) , v €  SI. Also let

= {q C E3: x’(q) e 01 and y~ + 1 < y1(q) < y~ + 2). Then K1 is bounded

and measurable and K1 n 12 = K1. Moreover , 
~
I uIILt ( K )  = lV

~Li (G) 
< C for all

v ~ S. Since I
~
u
~L K = Il vif , for all v C S the hypothesis 12 C

2 ( j) L2~G1)

Impl ies tha t S is compact in L2 (G1).
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Proof of Theorem 2. Note tha t (3.53) implies tha t (3.50)— (3.52) hold

with y1(g) = y~, p
3 (g) = p~~, rk (g) = r~ . Choose a number R > Max (y~ ,p~ ,r~)

and define (cf. (l.2)—(l.4))

(5.2) = 12 - 

i=l 

S
1

(R) - S !( R) - S~~(R)

Now apply Green ’s theorem to v and V in This must be done by app lying

the generalized boundary condition (2.6) (resp . (2.7)) with u v and

V XVv (resp . u -
~~ v and v -‘~ xv) where x is a smooth cutoff function . The

technique is explained in [23, p. 57ff]. The result is, by (3.53),

o = J  (vA~~-~~ Av)dV

(5.3) = 2 i Im [
~ 

J 4 v  ~~~ y R 
dx + 

j~ l 
JG t 

~~ p R

+ 
I” 

j <{~ ~~~~~~~~ 

R2d~k=l G’~ r=R

Applying Proposition 3.4 to v and using Parseval ’s rela tion in L 2 (G
1),

L2(G!) and L2 (Gj~) gives

I dv (R) I’ cx dv (R)
0 = lin ~~ v~~ (R) —

~~~~~ + ~ v~~ (R) ~~
1=1 2.=l dR j=l £=l ~ dR

(5.4)

I” dv” (R)
+ ~ v~~ (R) k~

k=l 9.=l dR

5 - .- 5-- - - .—.~~~~~~~ —- -. - - -5 - . - 4
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Finally, using ( 3 . 5 0 ) — ( 3 . 5 2 )  and the Wronskians for equations (3.33)—(3.35)

gives, after simplification,

I I’
(to2 _ to~~+ i0)

ls~
’2 Ic i~

(to ) I2 + Ic !~ (to)~
2

i=l to>to~~ j=l ..A?to
J (~,)

(5.5)

I
,,

+ 
~ 

1c~~~( t o ) 12  =

k=l t=l

All the terms in these sums are non—negative;  see (3.48) . Hence , the sums

(3.30)—(3.32) for v are finite and have only exponentially decreasing terms

since to C [O ,°) — 0 t ff~
12
~~ 

Thus v € L2 (12) and therefore v ~ D(A12) and

—A12v = to2v which , with (3.55), implies v = 0. Note that if to C 0 t f f (
~~

)

then one cannot conclude that v C L 2 (12) because of the exceptional solutions

(3.38), (3.41), (3.42) , (3.44). However, if I” > 1 then all c~~~(to) 0 , as

before , and hence v(q) = 0 In Sj ~. The analyt ic i ty  of solutions of (3.53)

then implies that v(q) = 0 in 12.

Proof of Theorem 3. The proof is the same , except for one s tep,  as the

proof given in [23, pp. 65—75]. Briefly, the convergence of a sequence (u rn)

In L~~~~
C (A ,12) is to be proved where Fm 

= _ ( A + Z
m

) U
m 

has support  in

(defined here by (5.2)). Step 1 is to prove the convergence of {u rn
} in

L~ (A,12 ,,) where r < r” < r ’ . This can be done exactly as in [ 2 3 ] .  S tep  2

is to prove the convergence of C u )  in L
~

(A ,12R — 12
r”~ 

for any R > r ”~ The

proof in [23, p. 69] make s use of the Green ’s function for —A in E3 wh]ch

is an elementary func t ion .  An analogous proof for  the waveguide domains

considered here would require the Green ’s functions for —A in each S . S~1. 3

and Sj~ and these are  not known exp l i c i t ly .  As an a l ternat ive to this

me thod it will be shown here tha t there exists a constant C = C(R) such tha t 
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for all um

(5.6) UUm~L2(12 _12 ,,) ~ C Hum~L ( 1 2 )

Convergence of (urn
) in L 2 (12

r I~
) therefore implies its convergence in L~

0C(12).

The remainder of the proof follows that of [23].

To prove (5.6) recall that u = R12(z )F where Im z ~& 0, supp Fm C

and r is fixed. Applying Propositions 3.4 and 3.5 to urn E L2 (12) gives

( c f .  (3.46))

i(z ~~~~~~~~~~~ 
1/2 y

(5 .7) (u~)1~(y) = C
i~~
(Z
m
) e 

m

(5.8) ( u ) ~~~(P) = c!~~( z )  H~’~~((z - wi ( i))
/ p), V =

(5.9) (u)j~~(r) = cj~~(z) r~~ s’2 H,~
t ) (z h h12 r ) ,  V = (v~1+ 1) 1/2

Inequality (5.6) follows from (5.7)—(5.9) and the following

Proposition 5.1. Let [a ,b] C (0,~) and > 0. Then there exist

constants C = C(a,b ,o,) and R = R(a ,b, 00 ) such tha t

(5.10) r h h l ’2 j H ,~,
1) (Z h/’2 r ’) < C r h/ 2 H~~

1) (z 1/2 r)

for all r and r ’ such that R < r < r’, all v > 1/2 and all z C C such tha t

a < r e z < b a n d O < I m z < o 0 .

This estimate follows from F. Olver ’ s uniform estimates for Hankel

func t ions  [15 , 16].

Proof of Theorem 4. The existence of the limits v± (x ,to) in D(A~
0c )

follows from Theorem 3. Hence, only the radiation condition remains to be

verified . This follows from (5.7)—(5.9) because v±(.,w) = u r n  R12 (to 2
~~io)g.

“.5-.
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